3.1.62 \(\int \frac {\sinh (a+b x^n)}{x^2} \, dx\) [62]

Optimal. Leaf size=71 \[ -\frac {e^a \left (-b x^n\right )^{\frac {1}{n}} \Gamma \left (-\frac {1}{n},-b x^n\right )}{2 n x}+\frac {e^{-a} \left (b x^n\right )^{\frac {1}{n}} \Gamma \left (-\frac {1}{n},b x^n\right )}{2 n x} \]

[Out]

-1/2*exp(a)*(-b*x^n)^(1/n)*GAMMA(-1/n,-b*x^n)/n/x+1/2*(b*x^n)^(1/n)*GAMMA(-1/n,b*x^n)/exp(a)/n/x

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5468, 2250} \begin {gather*} \frac {e^{-a} \left (b x^n\right )^{\frac {1}{n}} \text {Gamma}\left (-\frac {1}{n},b x^n\right )}{2 n x}-\frac {e^a \left (-b x^n\right )^{\frac {1}{n}} \text {Gamma}\left (-\frac {1}{n},-b x^n\right )}{2 n x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sinh[a + b*x^n]/x^2,x]

[Out]

-1/2*(E^a*(-(b*x^n))^n^(-1)*Gamma[-n^(-1), -(b*x^n)])/(n*x) + ((b*x^n)^n^(-1)*Gamma[-n^(-1), b*x^n])/(2*E^a*n*
x)

Rule 2250

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(-F^a)*((e +
f*x)^(m + 1)/(f*n*((-b)*(c + d*x)^n*Log[F])^((m + 1)/n)))*Gamma[(m + 1)/n, (-b)*(c + d*x)^n*Log[F]], x] /; Fre
eQ[{F, a, b, c, d, e, f, m, n}, x] && EqQ[d*e - c*f, 0]

Rule 5468

Int[((e_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Dist[1/2, Int[(e*x)^m*E^(c + d*x^n), x], x]
 - Dist[1/2, Int[(e*x)^m*E^(-c - d*x^n), x], x] /; FreeQ[{c, d, e, m, n}, x]

Rubi steps

\begin {align*} \int \frac {\sinh \left (a+b x^n\right )}{x^2} \, dx &=-\left (\frac {1}{2} \int \frac {e^{-a-b x^n}}{x^2} \, dx\right )+\frac {1}{2} \int \frac {e^{a+b x^n}}{x^2} \, dx\\ &=-\frac {e^a \left (-b x^n\right )^{\frac {1}{n}} \Gamma \left (-\frac {1}{n},-b x^n\right )}{2 n x}+\frac {e^{-a} \left (b x^n\right )^{\frac {1}{n}} \Gamma \left (-\frac {1}{n},b x^n\right )}{2 n x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 68, normalized size = 0.96 \begin {gather*} \frac {\left (b x^n\right )^{\frac {1}{n}} \Gamma \left (-\frac {1}{n},b x^n\right ) (\cosh (a)-\sinh (a))-\left (-b x^n\right )^{\frac {1}{n}} \Gamma \left (-\frac {1}{n},-b x^n\right ) (\cosh (a)+\sinh (a))}{2 n x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sinh[a + b*x^n]/x^2,x]

[Out]

((b*x^n)^n^(-1)*Gamma[-n^(-1), b*x^n]*(Cosh[a] - Sinh[a]) - (-(b*x^n))^n^(-1)*Gamma[-n^(-1), -(b*x^n)]*(Cosh[a
] + Sinh[a]))/(2*n*x)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 5 vs. order 4.
time = 0.30, size = 77, normalized size = 1.08

method result size
meijerg \(-\frac {\hypergeom \left (\left [-\frac {1}{2 n}\right ], \left [\frac {1}{2}, 1-\frac {1}{2 n}\right ], \frac {x^{2 n} b^{2}}{4}\right ) \sinh \left (a \right )}{x}+\frac {x^{-1+n} b \hypergeom \left (\left [\frac {1}{2}-\frac {1}{2 n}\right ], \left [\frac {3}{2}, \frac {3}{2}-\frac {1}{2 n}\right ], \frac {x^{2 n} b^{2}}{4}\right ) \cosh \left (a \right )}{-1+n}\) \(77\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(a+b*x^n)/x^2,x,method=_RETURNVERBOSE)

[Out]

-1/x*hypergeom([-1/2/n],[1/2,1-1/2/n],1/4*x^(2*n)*b^2)*sinh(a)+1/(-1+n)*x^(-1+n)*b*hypergeom([1/2-1/2/n],[3/2,
3/2-1/2/n],1/4*x^(2*n)*b^2)*cosh(a)

________________________________________________________________________________________

Maxima [A]
time = 0.08, size = 65, normalized size = 0.92 \begin {gather*} \frac {\left (b x^{n}\right )^{\left (\frac {1}{n}\right )} e^{\left (-a\right )} \Gamma \left (-\frac {1}{n}, b x^{n}\right )}{2 \, n x} - \frac {\left (-b x^{n}\right )^{\left (\frac {1}{n}\right )} e^{a} \Gamma \left (-\frac {1}{n}, -b x^{n}\right )}{2 \, n x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(a+b*x^n)/x^2,x, algorithm="maxima")

[Out]

1/2*(b*x^n)^(1/n)*e^(-a)*gamma(-1/n, b*x^n)/(n*x) - 1/2*(-b*x^n)^(1/n)*e^a*gamma(-1/n, -b*x^n)/(n*x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(a+b*x^n)/x^2,x, algorithm="fricas")

[Out]

integral(sinh(b*x^n + a)/x^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sinh {\left (a + b x^{n} \right )}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(a+b*x**n)/x**2,x)

[Out]

Integral(sinh(a + b*x**n)/x**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(a+b*x^n)/x^2,x, algorithm="giac")

[Out]

integrate(sinh(b*x^n + a)/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\mathrm {sinh}\left (a+b\,x^n\right )}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(a + b*x^n)/x^2,x)

[Out]

int(sinh(a + b*x^n)/x^2, x)

________________________________________________________________________________________